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Abstract

We present an automated methodology to optimize laminated composite structures.
Our approach, inspired by bi-level optimization scheme, avoids its prime deficiencies and
is based on developed computationally inexpensive stacking sequences reconstruction
algorithm, which identically satisfies conventional set of blending rules. We combine it
with proposed tight approximation to feasible domain of composite integral parameters
and hierarchical zoning procedure to get highly efficient optimization methodology,
which we test in two example applications. In both cases it is shown that blending rules
compliant optimal solution remains within 10% gap from one with no rules applied.



1 Introduction and Overview

Design of an optimal composite structure is the problem to find the best (usually, minimal
weight) distribution of locally variable thicknesses and fiber orientations (stacking sequences),
which respect structural mechanical constraints and manufacturing (blending) rules as well as
some other restrictions, e.g. related to damage-tolerances. It is important to distinguish usual
constraints, which quantitatively characterize the degree of their violation by each particular
design, and various rules, which are similar to binary markers of design feasibility and for
which the notion of violation degree makes no sense. Usual constraints are to be accounted
for in conventional optimization-like treatment. On the other hand, blending rules, which we
discuss in length in Section [2, require the problem itself to be formulated such that possibility
of their violation never arises.

Complexity of optimal design process might be illustrated already at the level of usual
constraints. Indeed, evaluation of mechanical properties of composite structure is often com-
putationally intensive and requires sophisticated modeling software. This means that one
is required to solve large-scale, expensive to evaluate, non-linear, constrained mixed-integer
optimization problem, which is, in fact, not possible at all. The remedy is to get some in-
sights into the problem structure, which would allow to apply practically relevant (albeit not
rigorous) approximation schemes. Crucial points to be exploited are:

1. Presence of small parameter.

In virtually all industrial applications the number of plies n;, laid up at each admissible
angle 0,, o = 1,..., Ny, is large, which is the direct consequence of small single ply
thickness. Note that in this paper we exclusively consider the most common case of
symmetric balanced laminates with Ny = 4 possible ply orientations 6, € {0, 445,90},
although our approach applies equally in more general settings. Therefore the problem
actually possesses small parameter 1/N < 1, which allows to treat relative number
of plies p, = ns/N (percentages) as continuous non-negative variables. How large N
should be in order to justify the relation 1/N < 1?7 Experience revealed that already
moderate values N ~ 10 are, in fact, very close to that limit and therefore the above
reasoning applies to virtually all practically relevant cases.

2. Structural problem decomposition.

It is crucial that mechanical constraints depend upon specific stacking sequences only
indirectly, via the (half-)total number of plies N, percentages p and the set of integrated
composite material characteristics £, known as lamination parameters. Note that there
are exponentially large number of specific stacking sequences, which correspond to the
same (N, p, &)-values. Therefore, assuming that performance criteria could be reformu-
lated in terms of these parameters as well (which is not always the case, see below)
one could structurally decompose the original problem into two levels (bi-level scheme,
detailed, for instance, in Refs. [I} 2} B 4]; for a review of recent developments see, e.g.,
Refs. [5, 6]):

i) Global macroscopic level aimed to find optimal (N, p, ) values. Here one works ex-
clusively with macroscopic characteristics with no regard to actual stacking sequences.



The puspose is to satisfy structural mechanical constraints and to provide best at-
tainable performances. It is important that the resulting problem is usual continuous
constrained optimization task admitting efficient solution strategies and all the com-
putationally intensive activities are concentrated only at this level.

i1) Local microscopic level intended to establish particular stacking sequences, which
provide (N, p, €) parameters values closest to ones, obtained at global level. It is of cru-
cial importance that there are exponentially large number of corresponding solutions [3].
Moreover, despite of imposed manufacturing and integrity constraints (blending and
composition rules), the number of realizing stacking sequences remains exponentially
large and provides a kind theoretical justification to the methodology presented in this

paper.

As far as the upper (global) level problem is concerned, parameters to be considered in case
of balanced symmetric laminates are:

1. Number of plies n,, a = 0,£45,90, laid up at different orientations (or equivalently
the corresponding percentages p, = no/N) and the half-total number of plies N.

2. Integral characteristics of laminate composition, the so called lamination parameters
&, 1=1,2,3, defined as:

£ = 3h3 foh dz ((2) 22 = 3h3 N Clz) 22 Az € [-1;1
(1)
C(z) = [ cos(20:), cos(46y), sin(26) |7 .

Here Az denotes one ply thickness with A = NAz being the panel half-width, 0, is
orientation of k-th ply, 2z = k Az is the distance of k-th lamina to mid-plane and we
used vector notations instead of explicit indices. Note that for considered orientations
E has only three components.

It is worth noting that nowadays there are several efficient methodologies available to deal
with global level problem formulation. It is extremely important to establish exact feasible re-
gion of macroscopic parameters, which warrants the existence of realizing stacking sequences.
It is known [7, 8, 0] that for given percentages p feasible region of {-parameters is a convex
polytope defined by explicit set of linear constraints. This fact was utilized in Ref. [4] to
argue that the usage of collaborative strategies supplemented with standard optimization
methods might greatly facilitate the solution process. However, collaborative schemes are
generically expected to be less efficient than properly constructed direct approaches. We
address this issue in Section [4] and develop tight convex approximation to feasible region of
combined (p, ) parameters, which allows us to apply efficient direct optimization strategies.

It is hardly possible to underestimate the advantages of the above partitioning scheme,
which provides a clear separation of scales in the problem. Indeed, performance of designed
macroscopic structure mostly depends upon its macroscopic characteristics and not on its
microscopic composition. Moreover, exponentially large number of stacking sequences corre-
sponding to the same values of (N, p,§) parameters is reminiscent to the notion of entropy
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in statistical physics. Given that we are confident that bi-level scheme is fruitful concept
and is to be preserved in future developments of composites optimization methods. Unfortu-
nately, in its original formulation presented above it has rather limited applicability. Point
is that major part of modeling tools used to predict performances of composite structures
are in-house developed and, being provided with complete set of specific stacking sequences,
evaluate at once both large and small scale characteristics. Relevant microscopic observables
of interest might include, for instance, interlaminar shear stresses, strain check on every
ply, etc. Therefore, application of bi-level methodology is often impossible because real-life
applications might not technically admit explicit scales separation.

In this paper we solve the above issue via the development of fast algorithm to establish
representative set of stacking sequences, corresponding to given values of macroscopic pa-
rameters. Moreover, reconstructed stacking sequences identically satisfy conventional set of
blending and composition rules, which we present and discuss in length in Section [3] There-
fore, the algorithm essentially solves the problem posed at second (local) level of bi-level
scheme, but it is computationally inexpensive and thus could be embedded into the upper
level solution scheme. Although the methodology then ceases to be bi-level, it yet retains
prime advantages of bi-level approach: optimization is performed in terms of macroscopic
parameters only, representative stacking sequences are reconstructed “on the fly” essentially
utilizing the fact that there are exponentially large number of appropriate solutions.

Important ingredient of our methodology is the automated hierarchical zoning. Indeed,
best performance could ever be achieved only if macroscopic parameters are allowed to be
spatially inhomogeneous. In many cases design of large composite structures is based on its
subdivision into local panel (or zone) design problems, in which the material composition of
each panel is determined under assumed fixed loads. Since different zones are structurally
interrelated the process is to be iterated: refined material composition in particular zone
affects the loads of other panels and hence requires to solve panel-based problem anew.
Even within such iterative settings it remains unclear how to properly select the number
and locations of different zones. Inadequate choice might result in vast number of design
variables, for which the problem might become intractable. We propose adaptive multi-scale
methodology (Section , which was proven to be extremely useful in various contexts. It
allows not only to automatically select appropriate number of zones, but also significantly
facilitates the solution process. Namely, one starts with only a few (perhaps, a single) zones,
for which the solution might be found easily although it is expected to be far from being
really optimal. Then the obtained zones are subdivided further and problem is solved anew
with smaller spatial resolution using previous result as the initial guess. Process stops when
either smallest allowed resolution is reached or sequentially achieved gain in performances
becomes negligible.

Despite of its ideological simplicity the hierarchical zoning outlined above is technically
involved. For instance, in real-life applications the number of zones to be considered simul-
taneously might be large (a few decades, say). Corresponding total number of macroscopic
parameters is then of order O(100), making optimization problem almost intractable. To
circumvent this we propose to use locality of zones interaction in physically motivated prob-
lems. Indeed, the prime reason of rapidly rising dimensionality is structural interconnection



of different zones. If there would be no loads redistribution, problem factorizes into the set
of independent optimization tasks for each zone. On the other hand, change of the proper-
ties of particular zone affects only its neighbors, for sufficiently distant panels loads remain
practically the same. This suggests the possibility to develop a specific optimization method,
which exploits the locality of zone interactions and remains efficient even when number of
zones is large. In Section [6] corresponding implementation is discussed in details.
Methodology and algorithms outlined above were applied to well-known horseshoe and
wing box composite structure optimization problems, for which a number of results obtained
with other methods are available. It is convenient that both test cases might be solved
without blending rules imposition (they both admit conventional bi-level treatment) thus
providing a reference value, which is a lower bound on attainable mass. It turns out that
with exact accounting for composition rules optimal mass remains within ~ 10% gap from
the respective lower bound. This result is encouraging because a priori one could expect
that composition rules might induce severe non-local interactions between different zones and
hence highly degrade attainable performances. However, this turns out to be not the case. To
the contrary, we show that proper accounting for blending rules opens the possibility to design
technologically compliant structures with almost theoretically attainable performances.

2 Blending Rules

Manufacturing and integrity constraints, commonly known as blending or composition rules,
play a central role in composite structures optimization. It is crucial that they are not
the constraints per se because it is not possible to quantitatively characterize the degree
of their violation. Instead they should be considered as a set of binary classifiers, which
mark infeasibility of a particular design. Moreover, if the design appears to be infeasible
with respect to blending rules it is hardly possible to point out how its stacking composition
could be ameliorated. Therefore, the term “constraints” should not be considered literally,
blending rules are indeed “the rules” and are to be satisfied identically.

Stacking composition rules don’t have functional form and are usually tabulated in
the form of requirements imposed on admissible stacking sequences. For ply orientations
{0, 445,90} considered in this paper conventional set of blending rules could be summarized
as follows [10, [1T]:

1. Laminate is to be symmetric and balanced;

2. Minimal allowed relative number (percentage) of plies of each orientation is 8%;

3. At most 3 plies of same orientation could be grouped sequentially together (contiguity);
4. Change of orientation between neighboring plies must not exceed +45 (disorientation);
5. Orientation angle of outer-most plies is to be +45;

6. Outer-most plies must be continuous through all the structure (no drop-off);
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Figure 1: Single zone stacking sequence reconstruction: illustration of “horizontal” / “vertical”
constraints and contiguity/disorientation rules implementation.

7. Continuity of ply orientation between zones must be respected (continuity);

8. For every 3 dropped plies there must be at least one continuous ply covering the dropped
ones (dropping).

Note that major part of the imposed rules might easily be accomplished in the consid-
ered approach. Indeed, optimization methodology to be detailed in Section [6] operates with
macroscopic design variables, which are the (half-)number of plies N, percentages p and
laminaion parameters £. Balance and symmetry requirements become trivial once we iden-
tify ngs = n_45 = ni45 and consider only the half of laminate width. Rules 5 and 6 might
be identically accomplished by reservation of required continuous plies at very beginning.
Therefore, the only non-trivial rules to be considered are the rules 3,4 and 7,8 marked in
bold in the above list. Grouping of them in two pairs is not occasional: contiguity and dis-
orientation rules refer to each particular zone with no regards to its possible neighbors and
are to be taken into account always. As for continuity and dropping rules, they operate on
the boundaries of neighboring zones and become void when only a single zone is considered.

It is essential that only continuity and dropping rules deserve specific attention. This is
because it is well-known (see, e.g., Refs. [12, [I3] and references therein) how contiguity and
disorientation requirements might be accounted for in single zone settings via linear integer
programming formulation of stacking sequence reconstruction problem. Since we are going
to exploit similar ideas in multi-zoning context it makes sense to briefly review the most
essential points.

For single zone one is given the (half-)total number of plies N and the corresponding
percentages p, or equivalently the number of plies n, laid up at particular angle, which
constitutes the so called zone’s signature vector 7i. For each ply with index ¢ from mid-plane
one introduces a set of binary variables s;, = {0,1} describing its orientation, subject to
obvious “horizontal” constraints

Y sia =1  Vie[lN] (2)

and a set of “vertical” relations

S sen = o, 3)



which enforce stacking sequence to have given signature (distinction between “horizontal”
and “vertical” constraints and qualitative explanation of corresponding mnemonics is illus-
trated on Fig. . In term of binary variables contiguity and disorientation rules become an
additional set of linear constraints operating either in bulk of laminate (contiguity) or on
the interfaces (disorientation) of neighboring plies [12] 13]. To complete the setup one has
to specify the objective function, which is worth to take linear in s;, in order to maintain
problem complexity. Various performance measures could be used (for instance, uniformity
of plies distribution through the stack), however, in our approach the natural goal is to fit ex-
ternally given lamination parameters values £*. Therefore, the objective function to consider

[ = Z%, (4)

where additional variables v; > 0 and corresponding constraints

&i(s) — &1 < v (5)

are used to represent L; norm of {-residual as a linear function.

A few comments are now in order. In the above formulation total number of plies and
zone signature are preserved by construction. On the other hand, for any finite N it is
not possible to reproduce externally given continuous values £* exactly, the discrepancy is
always of order 1/N. However, as far as stiffnesses are concerned, there is no much difference
between percentages p and lamination parameters &, both parameterize rather symmetrically
in-plane and out-of-plane stiffness matrices. Then the apparent distinction between p and &
expressed in (315 appears unnatural, it is always worth to preserve problem symmetries and
to consider p, £ variables on equal footing. To achieve this we alter , to read

|Zsi,a - nal S N/{om (6>

f - nyl + Z’%av (7)

where the additional variables k., are non-negative and the factor NV is required to have proper
scales of different contributions. Therefore, single zone stacking sequence reconstruction
might be performed via the solution of linear integer optimization problems of two types:

1. The one defined in (2{5)), which treats p, £ variables differently;

2. The solution of ,|§|, where percentages and lamination parameters are considered
symmetrically.

Second formulation is advantageous not only because of symmetry, but also because it is much
more flexible with respect to problem feasibility. Both formulations are used below and are
to be supplemented with identical set of constraints related to contiguity and disorientation
rules, which we do not present because of their simplicity.



Figure 2: Patch set representation for composite structure with two zones.

Determination of stacking sequences for multi-zoned structure differs from above single
zone treatment in several aspects. First, there are plies common to different zones, for which
corresponding s; o, variables are to be identified. Second, continuity and dropping rules are to
be explicitly taken into account. To address these issues it is natural to introduce the notion
of patch, which is the sequence of several sequentially groupped connected plies of the same
area shared between different zones, Fig. 2 Note that patch concept had been considered in
the literature already [13| 14} [15], albeit with different purposes. Every patch is characterized
only by its width and the connected set of zones it covers (patches covering all zones will be
refered to as having no boundary or continuous). Upon stacking sequences determination one
could also assign a particular ordered ply orientations to every patch. Description of multi-
zoned structure in term of patches allows to address directly both continuity and dropping
rules, as well as to properly assign the above binary degrees of freedom to different zones.
Indeed, continuity rule only requires that boundaries of different patches never come to
the same location. Dropping rule states that width of patches with non-zero boundary is
limited from above. Therefore, the continuity and dropping rules for stacking sequences are
transferred identically to the particular requirements on admissible patches.

When appropriate exhaustive set of patches is constructed, stacking sequence determi-
nation might be performed similar to single zone case. Distinctions are mostly technical,
although efficient solution requires specific tricks (see below). For instance, binary variables
and corresponding “horizontal” constraints are to be considered now for plies in all patches,
while “vertical” constraints are to be introduced for each zone with respect to all cover-
ing patches. With these reservations contiguity and disorientation requirements look almost
identical to what had been discussed already.

Therefore, the prime difficulty to construct stacking sequences for multiple zones reduces
to finding an exhaustive set of patches compatible with continuity and dropping requirements
at zone boundaries and to the solution of resulting linear integer problem. These are the topics
of next Section.

3 Stacking Sequences Reconstruction

In this section we provide the detailed description of computationally inexpensive method to
reconstruct full set of stacking sequences of multi-zoned laminate composite structures. The
problem setup is as follows. There is a known number of zones Z of fixed connectivity, for
which both the target number of plies n, o u = 1, ..., Z and the desired lamination parameters
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Figure 3: Particular iteration of SLB-like methodology in 3-zone example. Five patches
already constructed, indices indicate construction order. Boundary set B is non-zero, n¥ are
the reduced zones signatures to be exhausted during the process.

values &, o are given. Our method consists of two prime stages:
1. selection of exhaustive set of patches p, fulfilling continuity and dropping rules;

2. two-step solution of resulting linear integer problem aimed to ensure contiguity and dis-
orientation requirements and to provide minimal L-residual with respect to externally
provided zone signatures n, , and lamination parameters £, ., p =1,..., Z.

The first stage of the method is reminiscent to well-known Shared Layer Blending (SLB)
methodology [1) 2 [16] and at each step attempts to construct patches of maximal permitted
area to be placed most distantly from the mid-plane (outer blending). At every iteration of
the algorithm the following data is available, Fig. [3}

e Current signatures of zones n,, ;

e Boundary set B of already constructed patches, which are the locations of ply drops as
they are seen from the mid-plane.

To obtain the next patch we sequentially consider all possible integer vectors t, such that
at least for one zone t, < n,., Va. For given signature ¢ patch candidate is constructed
similar to that in conventional SLB, however, we attempt to get all possible candidates.
Moreover, it is crucial that not all formally acceptable vectors ¢t are indeed appropriate.
One should check first that accumulated patch set together with proposed candidate and
remaining zones signatures leaves a chance for resulting linear integer problem to be feasible.
Of course, it is not technically possible to solve full fledged integer linear problem for each
patch candidate and we utilize simplified scheme, in which feasibility is tested with respect
to corresponding relaxed variables. Namely, we augment accumulated patch stack with
candidate patch and patches of width ) n,, > 0, each covering one remaining zone (thus,
the rest of blending rules is temporally discarded) and attempt to solve linear problem of
type [1| (see the previous Section) treating all s, , variables as continuous. This provides
crude but rather restrictive feasiliblity test and ensures that proposed candidate makes sense
at all. In practice, feasibility test discards an absolute majority of proposed patches and here
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Figure 4: Patch construction algorithm in the example of three line-aligned zones. Left:
intermediate state, some patches are completed, non-empty boundary requires to borrow
one ply from outer-most layer; reduced zones content is shown at the bottom. Right: final
exhaustive set of patches in all zones. Nearby numbers indicate patch widths.

we radically differ from conventional SLB. Collected set of patch candidates are then sorted
with respect to area and width, most extended and thick candidates are to be considered
first. In case current boundary set B is non-zero or patch candidate is not continuous, it
is also confronted to continuity and dropping rules: candidates violating any of them are
either modified (diminished in width and/or area) or discarded. First encountered suitable
candidate is taken to be the next patch.

One additonal point is worth mentioning here. It might happen, especially at later it-
erations, that none of candidates pass feasibiblity check. There might be several possible
causes: either boundary set B prevents patch selection or relaxed linear problem appears to
be infeasible. However, it is crucial that in both cases one and the same trick, inspired by
conventional SLB methodology, recovers normal patch selection algorithm. Namely, it suf-
fices to borrow one continuous ply from some already constructed patch (perhaps, outer most
one) and place it at current position in the patch stack. Ultimate reason for this recipe to
succeed is that it simultaneously removes boundary set B altogether, diminishes the number
of disorientation interfaces and introduces additional layer in the bulk, which might help to
satisfy contiguity rules. The only situation, when this trick might not be applicable, corre-
sponds to already exhausted outer-most patch, but this is virtually impossible in practical
applications. In these rare cases we simply bypass feasibility checks, patch construction is
performed similar to that in conventional SLB methodology. Once appropriate patch with
signature t is selected, covered zones are reduced n, < n, —t and process repeats until
signatures are zeroed in all zones.

For illustration purposes we follow Ref. [I] and consider the above procedure in simple case
of three neighboring line-aligned zones 1 — 2 — 3 with initial signatures [40/17/7]s, [35/14/9]s
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and [29/6/12],, Fig. [l Algorithm first selects appropriate outer-most patch of width 46
and signature [6,27,6,7], which is written in general form [n_4s5, 19, n4s5, 199 because each
particular patch is not required to be symmetric. Implied feasibility checks make our method
different from conventional SLB at first step already, SLB would pick up outer layer with
signature [6,29,6,7] and width 48, but it does not pass consistency test in our approach.
After appropriate reductions algorithm continues and second suitable patch is determined
to be [1,0,2,0], it covers only first two zones. Non-empty boundary set between second
and third zones appear, it has to be taken into account in subsequent construction. Third
found patch is again not continuous, has signature [0,0,0,2] and covers second and third
zones, boundary remains non-empty, but it is now shifted to be inbetween first and second
zones. Fortunately, boundary does not pose serious obstacles for next two iterations of the
algorithm, at which patch set is augmented with [1,0,2,0] (first two zones) and [1,1,1,0]
(first zone only). At this stage (Fig. [4] left) boundary set becomes maximal and the only
possibility to continue is to borrow several plies from outer-most patch. It turns out that
single continuous ply placed at current location passes feasibility check. Algorithm in a sense
is restarted at this point because boundary set is totally removed. Final patch structure
is presented on the right panel of Fig. [d where the relative widths of all but outer-most
patches are correctly preserved. Once the exhaustive patch structure is determined, stacking
sequences are reconstructed as described in previous Section. Note that we solve symmetric
with respect to p, £ variables formulation, therefore solution is not obliged to reproduce
exactly initial ply counts in the zones. In particular, in the considered example output zones
signatures are [39/17/8]s, [35/14/9]s and [28/8/9]; respectively with the same total number
of plies, but slightly (of order 1/N) different percentages.

The outcome of the above procedure is the ordered set of patches, each characterized
by its width and covered set of zones. Then determination of stacking sequences requires
to solve integer linear problem, single-zone version of which was described in the previous
Section. For reasons already explained we solve symmetric problem, in which percentages p
and lamination parameters £ are treated on equal footing.

It is apparent that for sufficiently fine zoning the linear integer problem might become
prohibitively large, especially when zone signatures are vastly different and corresponding
patch set contains significant number of small patches. Then it was proven advantageous to
conduct the solution via the two stage process. First, stacking sequence is determined for
outer-most continuous patch. Then reduced linear integer problem is solved to establish ply
orientations in remaining patches. Underlying idea is essentially the same as in SLB method:
in practically all relevant applications top level continuous patch is expected to contain
significant number of plies. However, the treatment of outer most patch is much simpler and
is equivalent to single zone stacking sequence determination. Therefore, two-stage procedure
allows to greatly reduce the overall complexity of the algorithm.

It remains to discuss how algorithm recovers in rare cases of final integer linear problem
infeasibility. Since continuity and dropping rules are identically fulfilled, binding constraints,
which might prevent the solution, are related to either contiguity or disorientation rules. In
this case we essentially apply the same trick as above, however, appropriate places to insert
continuous plies are to be determined first. In order to establish proper locations we solve
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specifically reformulated integer linear problem, in which all potentially binding constraints
are relaxed and objective function is L; norm of corresponding relaxation variables. Refor-
mulated problem is always feasible and its solution identifies the minimal set of constraints
preventing stacking sequences determination. Then we attempt to add a continuous plies
(perhaps, borrowed from outer-most patch) at several determined locations and solve orig-
inal problem anew. In case of failure algorithm terminates and stacking sequences remain
undefined. However, this happens too rarely to be of any practical relevance.

4 Design Space

As was argued previously, retaining clear distinction between macroscopic (plies count N,
percentages p and lamination parameters £) and microscopic (specific sequence of ply orien-
tations) “degrees of freedom” is ought to be the cornerstone of efficient optimization strategy.
However, integral characteristics appear as redundant variables, for which proper variation
ranges and constraints on allowed values are yet to be given. This is the problem of integral
parameters feasible domain determination, which deserved much attention in the past [7, 8, 9.
Multiple zones are of no concern here because total allowed design space is the appropriate
direct product of identical single zone feasible domains. While there are essentially no specific
limits imposed on the number of plies N, it had been known long ago that once percentages
p are fixed, feasible region W,(£) of lamination parameters £ is convex polyhedra, vertices
of which are rather explicit geometrically. Namely, consider an “extreme” configurations
consisting of Ny groups of sequentialy stacked plies of the same orientation. There are
Ny! stacking sequences of this type and they define the vertices of W,(§): convex hull of
corresponding “extreme” &-values is an exact feasible region for £ parameters at fixed p

W,6) = {&: Alp)& < blp)}. (8)

This immediately suggests [4] to utilize nested collaborative methods to conduct optimization
with respect to (N, p, &) parameters. Namely, valid direct methodology is to treat N,p
parameters subject to

N>0, 0<p<1, ) p=1, (9)

at outer level of nested scheme, while lamination parameters & € [—1;1]® together with linear
constraints are to be considered at inner level. Advantage of this approach is that it
exactly covers feasible region Q of (p, &) parameters. However, it is not symmetric in (p, §)
and, as might be generically expected for collaborative schemes, is less efficient in terms
of required number of model evaluations compared to direct approaches. Therefore, it is
desirable to establish tight approximation to feasible domain in the combined (p, ) space.

Our proposition is that feasible region € in the space of combined lamination parameters
(p, &) might be described rather precisely in the product form:

Q =~ Qp X Qé, (10)

where:
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e (1, is convex polytope in p-subspace
Qt pi € [pmini 1 — No— 1) pin], > _pi=1 (11)

with Ny vertices p,, for which only one p-component takes maximal allowed value,
indicated in , others remain at minimal bound p,,in;

e () is again a convex polytope, constructed similar to ¥,(§) above, but using p, as
reference percentages

Qe = T, (6). (12)

Note that since W,(§) explicitly accounts for all permulations of “extreme” stacking
sequences, )¢ is in fact p, independent.

In order to verify and access the quality of proposition ([10) one should check the inclusions
Q, x Q C Q, QC Q, x Q, (13)

and estimate the quantity

A = [(Q x Q)\Q[/10], (14)

which is the relative difference of volumes of two sets . To this end we consider the
probabilities

Plz ¢ Q, x Q] for = ~ U[Q], (15)

Plx ¢ Q] for  x ~ U, x Q, (16)

where U[W] denotes uniform distribution over the set W. Note that directly mea-

sures the relative volume difference A, while provides the same with €2 and €, x )
interchanged.

Probabilities , were measured via Monte-Carlo methodology using sufficiently large

(10%) sample of uniformly distributed points. It turns out that probability is zero with
high confidence level (all points, sampled from U[)], belong to €, x €)

Q C Q, x Q, (17)
while is non-zero but small providing the following estimate of relative volume difference
0 <A < 107°. (18)

Therefore, we heuristically justified the proposition . Moreover, direct product 2, x )
provides conservative estimate for true feasible region {2 and is sufficiently tight for any
practical purposes. Simple to describe approximation 2, x )¢ provides the base for efficient
optimization methodology to be described below.

13
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Figure 5: Example of three-level hierarchical zoning.

5 Hierarchical Zoning

Hierarchical zoning alluded to in Section [I] is an important ingredient of our optimization
methodology and is worth of separate discussion. Indeed, in industrial applications it is not
a rare case to consider sufficiently large number of zones (up to a few decades). The number
of design variables might then becomes as large as O(100), which is about or even beyond
the upper limit for engineering optimization methods. However, the challenge here is not
only technical: the prime point is that blind application of even most powerfull optimization
algorithms is not the most efficient approach to physically motivated problems. Indeed,
appropriate solution is known to be smooth in a sense that it possesses some finite length
scale of characteristic variations. However, when number of introduced variables becomes too
large compared to that length scale optimization process will definitely stall: just by entropy
arguments any algorithm will spend almost all the efforts in probing physically irrelevant
configurations, corresponding to rough distributions.

Unfortunately, it is usually not possible to guess the proper length scale a priori, it is
known to be too much case to case dependent. Moreover, some bounds on it might come
from external arguments, like ribs/stringers locations etc. In either case, guessing the length
scale is known to be error-prone and too much sensitive to various problem details. Instead,
another approach, known as multi-scale analysis, was proven to be successful in numerous
applications: one starts with largest available length scale (coarse resolution, small number
of variables), finds the approximate solution and then dimishes the length scale (refines the
resolution, introduces more variables) using previous solution as the initial guess for the next
iteration. Multi-scale methodology is quite generic and works in virtually all cases, however,
its silent feature to be explicitly mentioned here is that it assumes the use of localized
optimization algorithms. Indeed, the very notion of “initial guess” makes sense only in local
settings and becomes void once global search is attempted. We will come back to this issue
when discussing our optimization methodology.

Within the context of laminated composites optimization multi-scale methodology looks
extremely simple and reduces to sequential refinement of nested zones within the original
structure geometry I'. Indeed, the ultimate goal of zoning procedure is to find subdivision of
original geometry into smaller components (zones) I',,

r = u,T,, 19
ptp
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which is sufficiently effective in total mass reduction, but yet is technically feasible to achieve.
Of course, there is an infinite number of ways how actual division might be performed,
however, several competitive factors are to be taken into account. On one hand, smaller
total mass requires larger number of zones. On the other hand, gain in mass diminishes with
each resolution refinement, while finding the solution becomes more and more expensive.
Usually there are some technological constraints on smallest possible zone geometry and
it is not a rare case when finest reachable zoning structure is known in advance. Although
theoretically it is possible to discuss fully automated zoning, we are currently not in a position
to do this quantitatively. Instead, we assume that smallest possible zones geometry I, is
known beforehand and solve the problem how to obtain corresponding optimal parameters
(N, p, &), adaptively. Schematically, utilized procedure looks as follows. We always start with
most coarse zoning, in which the whole structure is considered as a single zone, I'© = T
Corresponding optimal solution is then easy to obtain, although it might be far from real
optimality. At every iteration we have determined therefore some exhaustive set of zones I';,,
fulfilling together with corresponding zone-specific parameters (N, p,£),. Then some
of I, are divided further into several smaller zones and localized optimization method (see
below) is applied to get parameters of smaller zones using previous solution as the initial
guess. Process repeats until either smallest allowed zones geometries are reached or the gain
in total mass becomes negligible. Three-step zoning procedure is illustarted on Fig. 5| It
should be noted that adaptive choice of zones is only the convenient representation of entire
composite structure during the optimization process. Any involved modeling tools always
operate in terms of smallest available zones regardless of current zoning level.

6 Optimization Methodology

This section provides a synthesis to what had been discussed so far and assembles into efficient
optimization methodology prime ingredients of our approach: hierarchical zoning, separation
of macro- and micro-scopic scales, computationally inexpensive (“on-line”) reconstruction
of stacking sequences fulfilling all the required blending rules. We consider the following
generic setup. There is a composite structure of fixed geometry I', for which finest allowed
subdivision into elementary subzones is provided, [' = Uy¢ KFkO) (from now on elementary
zones, which cannot be refined further and for which the geometries Fg)) are assumed to be
known, are refered to as subzones). Zones are then defined as non-intersecting unions of
several connected subzones

T, = Uker, TV, UK, = K, K,NK, = 0, (20)

connectivity structure of which could be derived from that of subzones. The purpose is
to find reasonably efficient zoning I' = U,I', and stacking sequences S, in all zones, for
which total mass of the structure is minimal provided that specific set of reserve factors RFy,
associated with each elementary subzone, remains sufficiently large, RF, > 1. Without loss
of generality we assume the same normalization of all reserve factors, which allows us to
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define zone-specific single RF-function:

It is assumed that each reserve factor RFy is to be estimated with some externally given
modeling software operating in terms of stacking sequences Sy, which for selected zoning are
the same within the particular zone, S, = 5,, k € K.

Proposed methodology is iterative and as follows from above generic setup its outer-most
level is ought to be hierarchical zoning refinement. Initially we consider trivial partitioning
consisting of single zone. Then at every iteration current zones are divided into two or three
smaller zones until either minimal geometries I'®) are reached or termination criteria trigger
algorithm completion. Therefore at every outer-most step the following data is available:

e definition of zones { {,,} as the collections of connected elementary subzones with empty
pair-wise intersections;

e current approximations X = (N*, p*, &), to optimal solution in each zone.

Inner loop of our algorithm performs constrained minimization of total mass

min y Zu M(X,)
(22)
RF,(X) > 1

with respect to the design variables
X = [Xy, ..., X7/, (23)

which are the collection of number of plies N, percentages p, and lamination parameters &,
for all current zones. Variation domain of design variables is the direct product of feasible
regions, determined for each factor X, separately as described in Section @

As we already noted direct optimization of is not only problematic technically, but
is also not the most efficient approach. Indeed, the problem possesses specific structure,
namely, various factors X, are totally factorized in the objective function and their interde-
pendencies are only due to the imposed constraints. Furthermore, in all physically motivated
problems some sort of locality is expected to hold. Qualitatively, altering the stacking se-
quence X, in a particular zone mostly affects reserve factors of this and some finite number
of neighboring zones, while too distant RF, remain practically the same. Quantitatively, this
means that in the decomposition

SRF, /6X, = D64 + Qu (24)

diagonal term D dominates, while off-diagonal entries () rapidly fall down with the dis-
tance between zones p and v. Practically, however, it is not possible to infer appropriate
length scale, which dictates the number and locations of dependent neighbors. Moreover,
situation often becomes more complicated when additional structural elements (beams, ribs
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and such), not present explicitly in problem formulation, mediate the interactions. Given
that we decline to determine zone interdependencies in advance, instead we propose to do
that adaptively with coordinate-descent like optimization method, in which dependencies are
estimated dynamically during the process.

In more details, basic inner loop of our algorithm considers design variables X, sequen-
tially (after appropriate ordering, see below). At iteration p optimization is performed in the
reduced design space

X e [X], ... X, £ A, . X7 (25)

with respect to X, variables only, subject to linear constraints defining the appropriate
feasible region. In other words, all the variables are held fixed at current guess X, except
X, which is allowed to vary within the adjustable region around the current solution. Note
that despite of the reduction of the design space the number of constraints does not change, at
every iteration all zone-specific reserve factors are taken into account. Particular feature
of our methodology is that currently known best solution explicitly enters the formalism,
which therefore becomes directly applicable in multi-scale context (see above).

However, there remain two crucial issues yet to be resolved. First, it is well known that
coordinate descent methods applied in constrained problems often get stuck in even not a
locally optimal locations, because, in particular, coordinate axes have nothing to do and are
not aligned with tangent space to currently active constraints. Second, due to the usual
computational complexity of engineering applications it is custom to use Surrogate-Based
Optimization (SBO) methods to search for the solution. However, SBO by its nature is a
global methodology, for which the notion of proper initial guess is rather illusive.

To circumvent both issues we propose to supplement SBO methodology, applied in the
reduced design space , with filtering approach, well known in mathematical programming
(see, e.g., Refs. [I7, [I8, 19] and references therein). In a nutshell, filter is a binary marker,
which operates in two-dimensional space of objective function values and single measure of
constraints violation and marks every evaluated design as being “good” if it improves cur-
rently selected Pareto optimal set of solutions. Most important for us feature of filtering is
that it might allow and mark as acceptable the designs with rather significant constraints
violation. This suggests that filter might be an invaluable tool within the considered method-
ology. In more details, we switch on the filter facility at the beginning of every cycle of inner
optimization loop. Then the next SBO optimization with respect to X, variables is peformed
as usual, however, the selection of best found solution is done only among the designs ac-
cepted by filter. In particular, best accepted solution becomes the “base point” X* for the
next SBO iteration dealing with next group of variables X,.

Experience revealed that filtering almost totally ameliorates the deficiencies of utilized
SBO-based coordinate descent method. However, to be on the safe side we also monitor
interdependencies of various groups of variables and attempt to perform optimization of
several zones simultaneously in case no progress had been achieved in last performed inner
loop with feasible base point X*. Indeed, coordinate descent with respect to X, might get
stuck due to the activity of some constraints RF,, variation of which with X, precludes
the progress of the algorithm. Within the SBO context X, variables are sampled somehow
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and it is natural then to consider violation probabilities of different constraints. Zones with
maximal violation probabilities are dependent with the considered one and most likely prevent
algorithm progress. Due to the mentioned above locality properties the number dependent
active zones is usually small.

Data: zoning structure L

for V zoning levels | € L do

X* < best solution

reset filter

for V zones €1l do
optimize for X, € X; +4d,, A, Vv
collect dependencies D,, = {p, i1, pt2, ...}
X* < best accepted by filter

if solution not improved then
for V zones € 1 do
L optimize for X, € X} £ A - { 1, ve D,

0,v¢D, "

if termination criteria then

L break

Figure 6: Summary of implemented optimization scheme.

To complete the specification of our optimization methodology it remains to specify ter-
mination criteria and discuss the best suited ordering of zones to be considered in inner
optimization loop. Termination criteria are simple: either no progress was achieved during
the last cycle or current best solution is feasible with all the constraints being active. As
far as ordering is concerned, we found that it is advantageous to consider first infeasible
zones with RF, < 1. Then inactive constraints with corresponding groups of variables X,
are worth to treat next. Finally, active zones are to be optimized, but with one essential
modification. For active zones there is no hope to improve the mass. Therefore, it makes
sense to fix the number of plies N, for active zone and to maximize its reserve factor with
respect to remaining variables (p,&),. This is essentially equivalent to the selection of best
stacking sequence at fixed total mass.

Simplified scheme of our optimization algorithm is presented on Fig. [6] Note that we
do not discuss the details of utilized SBO methods, these were provided by algorithmic core
of pSeven integration platform [20], on which our technical implementation is based. It is
important and very convenient that stacking sequence reconstruction remains an optional
feature in the above scheme. Depending on specific modeling software one could use either
full-fledged optimization with “on-line” determination of allowed stacking sequences or fall
back to conventional bi-level strategy.
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Figure 7: Horseshoe test case setup: geometry and applied fixed loads.

7 Application Examples

In this section we discuss two application examples, with which we tested our methodol-
ogy. Tests selection is primarily dictated by availability of corresponding technical details
in the literature, unfortunately, for many interesting applications technicalities could not be
extracted from public sources. First test case is a well known horseshoe problem [10] 21], in
which zone loads are fixed and no issues with zones interdependencies arise. Historically, we
considered it at early stages of reported study using yet unfinished versions of our methodol-
ogy. For that reason we believe that presented results are not the best attainable, however,
they are quite satisfactory and hence deserve some discussions. Second example is a con-
ventional wing box test problem [I} 2 16, 22], which adequately reflects majority of issues
present on real-life applications: loads redistribution upon the change of single zone parame-
ters, presence of “hidden” structural elements etc. It is important that both examples might
be considered with no explicit reference to specific stacking sequences (without blending rules
applied). Corresponding treatment is equivalent to the solution of upper level problem in
conventional bi-level scheme and provides strict lower bound on attainable total mass, which
is to be compared with the solution respecting blending rules. In both cases we found that
reconstruction of proper stacking sequences worsens the solution as it should, but optimal
mass remains within 10% gap from corresponding theoretical lower bound.
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1 2 3 4 ) 6 7 8 9
N |11] 9 8 |16 | 14 | 12 | 10 | 13 | 20
m [21]1916]60]52[22]19|25]6.9
RF|10]10{10}10]10]1.1|{1.0]1.0]1.0
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
N | 17|14 |14 |11 )10 13|14 | 9 | 12
m 645451211925 [3.0]19/1.9
RF|10]|10{10]10]10(1.0|1.0|1.0|1.1

Table 1: Horseshoe test case: total number of plies, masses [Ib] and reserve factors obtained
without blending rules imposition.

7.1 Horseshoe Model

Setup of horseshoe problem is illustrated on Fig. [7] Plain horseshoe-like structure consists
of 18 elementary subzones, for which the geometry and applied loads are known in advance.
Objective function is the total mass, while 18 constraints correspond to the stability require-
ments for all subzones (buckling reserve factors). Since there are no shear stresses buckling
reserves might be evaluated semi-analytically [22].

First we consider the horseshoe test case without blending rules applied. Due to the fixed
loads problem factorizes into 18 independent subproblems, solution of which is straightfor-
ward. Technically we performed optimization in pSeven integration platform, which provides
among other things efficient optimization algorithms. Resulting optimal mass distribution in
different subzones, corresponding reserve factors and optimal number of plies in each subzone
are summarized in Table [I| where we rounded all floats to one significant digit. Conducted
solution provides strict lower bound on the attainable mass

5 = 61.0 Ib. (26)

Once the solution at upper level of conventional bi-level scheme is obtained, it is instructive to
consider what happens if we solve lower level problem as well. Direct application of stacking
sequences reconstruction algorithm of Section |3| reveals that in account of blending rules
traditional bi-level scheme produces 18% worse mass

Mljiflevel - 72.2 1b. (27)

Note that we intentionally do not provide the details of obtained solution. As will become
clear shortly it is not the best possible and for brevity reasons corresponding stacking se-
quences and RF distribution are omitted.

Next let us consider the problem using methodology proposed in this paper. First, we
define the structure of hierarchical zoning: there are 4 zoning levels having 1, 3, 9, 18 zones,

20



H 1-stlevel

Figure 8: Hierarchical zoning in horseshoe test case: first three levels include 1, 3, and 9
zones, last one consists of 18 zones, which are the same as elementary subzones. For all but
last levels zones ordering is counter-clockwise.
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Figure 9: Horseshoe test case: patch structure of optimal solution at second zoning level.
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Figure 10: Horseshoe test case: patch structure of optimal solution at third (finest) zoning
level.
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respectively (Fig. , zones at last level coincide with elementary subzones on Fig. . At
first zoning level the entire horseshoe structure is considered as a single zone, corresponding
solution does not involve patch construction algorithm. Optimal stacking sequence at first
level is
(8/4/4]"
[—45/02/—45/02/45/0/45/902/45/90/—45/90/—45/03/45]2”
where conventional notations [ng/ni45/n9o] had been used and subscript indicates, that this

is only the half of total ply counts due to the symmetry (stacking sequences are always
ordered from mid-plane to outer skin). Corresponding mass and buckling reserve factor are

(28)

MY = 9361, RFY =1.02. (29)

The above solution is used as an initial guess to conduct optimization at second zoning
level, which includes three zones. Optimization methodology had been discussed in length
already, hence we simply quote the results obtained. Optimal set of patches is presented
on Fig. [9] where the relative patch widths are correctly preserved. Corresponding stacking
sequences, which are derived from the determined patch structure via two-step linear integer
programming are

zone 1 : [5/3/3]%
[0/-45/0/45/0/-45/90/45,/0/-45/0 /45>
zone 2 : (6/5/4]% (30)
[0/455/05/45/0/-455 /90 /-455 /903 /45 /0/-45/0 /45
zone 3 : [4/4/5]P
[0/45/0/-45/90/45 /90 /-455 /903 /45 /0 /-45 /0 /45 )
while the corresponding reserve factors and optimal mass are given by
@ —
M 82.5 b, (31)

RF® = (1.15, 1.02, 1.14)

Solution at third level is obtained similarly, corresponding optimal patches are shown on
Fig. again with preservation of relative patch widths, stacking sequences for all 9 zones
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are

zone 1 : [3/3/4]%
90/-45/03 /45 /90 /-455 /90 /45,]
zone 2 : [2/3/2]%
90/-45/0/-455/90/45 /0 /45,] &
zone 3 : [4/4/2]%
[90/-45/0/-45/0/-455/0/45/90 /450 /455](Y
zone 4 : [7/4/2]%
[90/-45,/0/-45/0,/-45 /05 /45 /9045 /0 /45,]
zone b : [6/5/4]% (32)
[00/45/90/-455/0/-45/0/45/90/-45 /0 /-45 /03 /45,90 /45,](¥
zone 6 : [4/4/4]%
[00/-455/0/45/90 /-455 /03 /45 /90 /45,]
zone 7 [5/4/3]%
[90/-45/0/-455/0/-45 /05 /45 /905 /453](¥
zone 8 : [2/3/2]%
[90/-453 /05 /45,90 /45,](Y
zone 9 : [2/4/3]%Y
[00/45/0/-455 /905 /-455 /0 /455](Y
while the corresponding RF factors and optimal mass are given by
M® = 70.31b, (33)

RF®) = (1.14, 1.05, 1.76, 1.06, 1.07, 1.09, 1.02, 1.11, 1.00)

As far as the solution at last zoning level is concerned, we found that it is not much different
from (mass improvement is less than 2%), but is significantly more expensive to
obtain. Therefore, in the horseshoe test case reasonable, but yet efficient in mass reduction
zoning structure corresponds to level 3 of our scheme (9 zones), consideration of smaller
length scales seems to be not justified.

A few comments are now in order. First important observation is that optimal mass ,
obtained in explicit account of all blending rules, is only 13% worse than the corresponding
lower bound and is slightly below of the result of bi-level approach, Eq. . This
fact becomes even more encouraging if we remind that it corresponds to twice coarser zone
resolution, for which the mass is expected to be larger. Simultaneously, it is apparent that
presented solution still possesses further improvement potential. Indeed, reserve factors for
zones 1 and 8 are ~ 10% larger than required, while in zone 3 excess is as large as 75%. It is
true that gap of order 10% in RF values is seen already at level 2 solution and hence could
be explained by some deficiencies of yet unfinished optimization methodology used to solve
horseshoe example. However, even with this reservation zone 3 result deviates too much. We
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Figure 11: Wing box test case: geometry and setup of the problem.

suspect that this is a direct consequence of blending rules imposition. Indeed, inspection of
Fig. 7| reveals that loads for zones 2 and 4 significantly differ and this is reflected in notable
difference in corresponding stacking sequences. However, blending rules require zone 3 to be
in-between its neighbors in terms of ply counts and this is unrelated to actual loads applied
to it. Then it might easily happen that corresponding RF factor is far beyond imposed bound
and we suggest that this is the reason of observed 75% excess.

7.2 Wing Box Model

As the second application example we consider well-known wing box test problem, which
was extensively studied in the past [I, 2, 16, 22]. Problem setup is shown on Fig. [11} there
are four spars and three ribs in wing box structure, which are covered from bottom and top
sides with 9+9 composite panels, optimal stacking sequences of which are to be determined.
Wing box is clamped at the root, external loads are applied at the tip as shown on the figure.
Material properties, allowed stains and safety factors are taken the same as in [22], mass of
the structure is obtained using fixed thickness of one ply 0.005 in and density 0.057 1b/in3.
However, compared to Ref. [22] we calculate buckling reserve factors differently following the
analysis of Refs. [23,24] (details are provided in Appendix [A]). Although it might be guessed
in advance that active set of constraints corresponds to strains for bottom panels and buckling
for top, we used generic definition of zone specific reserve factor with minimum taken
with respect to all load types. Static parts of the structure (ribs and spars) are fixed and
have 22 alternating £+45 plies with the same material properties.

To complete the problem setup it remains to discuss technical aspects of the solution.
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Figure 12: Wing box test case: hierarchical zoning at second (left) and third (right) levels.
First level consists of two zones covering entire bottom and top sides.

1 2 3 4 5 6
20/6/4]s | [17/4/2]s | [3/3/1]s | [32/7/4]s | [19/4/2]s | [6/3/3]s
1.09 1.05 1.0 1.09 1.03 1.11
7 8 9 10 11 12
31/7/4]s | [18/4/3]s | [5/4/1]s | [49/11/9]s | [29/11/14]s | [4/13/14];
1.0 1.01 1.03 1.0 1.02 1.01
13 14 15 16 17 18
[42/13/15], | [21/14/17], | [6/14/17]s | [29/12/29], | [18/15/19], | [4/14/17],
1.01 1.0 1.0 1.02 1.08 1.0

Table 2: Wing box test case: zone signatures and RF factors at third zoning level (no blending
rules applied)

It is based on the pSeven integration platform, which provides required highly configurable
optimization algorithms and allows easy integration with ANSYS Mechanical modeling tool
used in our study. As for the later, it had been configured via appropriate APDL scripts
to operate in two regimes: either using preintegrated stiffness matrices given in terms of
macroscopic parameters (upper level of bi-level scheme) or evaluating the model for given
complete specification of relevant stacking sequences. Mesh size for each zone had been
decided during the preliminary problem investigation, we found that it makes no much sense
to consider grids with more than 10 elements along the subzone edges.

Utilized hierarchical zoning structure, Fig. [12] consists of 3 levels with respective number
of zones 2, 6 and 18 (in later case zones coincide with elementary subzones and are indexed
the same). Silent peculiarity of zoning in wing box example is that there are always two
disconnected set of zones at top and bottom sides, which slightly simplifies the treatment.
Selection of particular zoning scheme is dictated by the problem itself and follows from the
qualitative analysis of applied loads.

As in the previous example, we first solved the problem without blending rules imposition
to get the estimate of best attainable mass. Contrary to the horseshoe problem solution is
to be conducted with sequentially refined zoning, at the first level with only two zones the
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optimal mass and RF factors are found to be

bottom : [34/8/4]%" RF = 1.09 (34)
top: [37/19/10]%Y RF = 1.01

MY = 974.8 1. (35)

Note that even with two zones the problem does not factorize because of additional structural
elements (spars and ribs), which mediate the interactions. Analogous solution at the second
zoning level turns out to be

(33/7/4]1? [19/4/2]? [6/3/3]?
RF=101 RF=101 RF=114

bottom : (36)

43 /15/12] [20/14/20) [7/14/16]8

t
P Rr—1.02 RF = 1.02 RF = 1.05

(37)
where for each sequentially indexed zone we provide vertically placed ply counts and RF
factors. Corresponding optimal mass at the second zoning level is

MY = 699.0 Ib. (38)

Finally, at finest possible resolution, in which zones are of minimal allowed extent, established
optimal solution is summarized in Table [2], corresponding total mass is

MY = 666.7 1b. (39)

A few comments are now in order. One might expect that quality of the solution could
be characterized by the activity of RF-constraints, it is tempting to conclude that solution
is indeed optimal if it has RF 2 1 for all zones. Apparently, even with no blending rules
applied solution presented in and Table |2| seems to be slightly suboptimal: in zone
6 (bottom panel) RF factor exceeds the limiting value by 10%. We experimented a lot
with this observation and found that judgement of solution quality by the activity of RF-
type constraints is, in fact, too simplified and should not be taken verbosely. In particular,
in the considered case we found a few other solutions with RF, ~ 1, Vu, but with mass
larger by about 5%. The key issue here is the load redistribution among different zones,
which precludes some RF factors to become close to 1. Indeed, in the presented solution
diminishing ply counts in zone 6 brings its RF factor down, but simultaneously increases the
loads on a few other zones, which then are to be made thicker in order to maintain solution
feasibility.

Next we consider wing box problem with the same sequence of zoning levels and explicit
reconstruction of stacking sequences, admissible with respect to all blending rules. This
essentially reduces to solving the problem anew with reconstruction methodology of Sec-
tion [3| and using different set of APDL scripts. Solution at the first zoning level is rather
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Figure 13: Wing box test case: patch structure of bottom (left) and top (right) sides at
second zoning level.

straightforward, it does not include patch construction algorithm. Corresponding results are

bottom:  [36/8/5]%  RF = 1.06
[45/0/-45 /0, /-45 /05 /45 /05 /-45 /03 /-45 /03 /-45 /03 / (40)
~45/03/-45 /03 /45 /05 /45 /03 /45 /90 /45 /03 /45 /03 /-45 /903 /45

top:  [45/16/7]Y RF = 1.08
[0/45/03/-45/05/45 /05 /-45 /03 /-45 /05 /45 /05 /-45 /03 /45 /03 /45 /03 /45 /05 /45 05/ (41)
—45/03/—45/03/—45/02/45/0/453/0/—453/0/453/O/—453/90/—453/903/45/903/45}gl)
MY = 988.8 1b, (42)

which, as expected, are quite similar to .
At the next zoning level with 2 - 3 zones blending rules come into force and dictate the

patch structure presented on Fig. where, as before, relative patch widths are preserved.
Respective solution in terms of zone signatures and resulting RF-factors reads

o [34/9/5)9 [19/7/5]® [5/4/5]? A
bottom:  pp” 10l  RF=108 RF =115 (43)
o [29/20/12]% [21/18/11]% [13/15/11]) (44)
RF = 1.0 RF = 1.03 RF = 1.02

with corresponding mass value being

M® = 738.71b, (45)
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1 2 3 4 5 6
27/9/5]s | [19/6/3]s | [6/3/2]s | [30/9/5]s | [16/6/3]s | [6/3/2]s
1.01 10.7 1.26 1.06 1.04 1.25
7 8 9 10 11 12
[36/12/6]s | [20/6/5] | [6/5/7]s | [30/16/19]s | [13/19/12], | [14/12/8];
1.03 1.02 1.3 1.14 1.0 1.21
13 14 15 16 17 18
[32/16/19], | [14/18/19], | [18/13/13], | [26/17/24], | [15/20/11], | [22/11/7],
1.0 1.01 1.22 1.02 1.02 1.0

Table 3: Wing box test case: zone signatures and RF factors at third zoning level (optimal
values).

while per zone stacking sequences are summarized in Table . Compared to , one
notice that solution remains qualitatively the same, both in terms of total ply count and
RF factors. Mass difference is mostly because of thicker bottom panels, while top side is
characterized by redistribution of plies from root to tip, which is a consequence of applied
blending rules.

Solution at the third level is constructed similar to above, however, corresponding patch
structure is difficult to present because of two-dimensional connectivity structure of zones
and large number of patches. It suffices to note that there are 36 patches at bottom side, 8
of which are continuous with outer-most layer having final width 4 (all continuous patches
placed internally are of unit width). At top side solution has 86 patches, 23 of which are
continuous and outer-most layer is of width 11 (similar to bottom case all other continuous
patches have unit width). Signatures of optimal stacking sequences for level 3 solution, as
well as respective reserve factors are summarizes in Table [3| while Table [5] presents complete
list of stacking sequences for all zones. Optimal mass is found to be

M® = 7185 Ib. (46)

Comparison with corresponding level 3 results in case of no blending rules imposition reveals
that qualitative differences, noted already for level 2, remain the same. Bottom plate becomes
thicker, while top side of wing box remains similar. Apparent feature of the presented solution
is that almost all zones, closest to tip, have sufficiently large RF values. This is dictated
by imposed blending rules: without them the width of both bottom and top sides rapidly
diminishes from root to tip of the structure, however, large width changes are effectively
forbidden by the dropping rule (among other factors).

Perhaps, the most important is to note that the difference between optimal masses
and is about 8%. This means, in particular, that blending rules imposition do not
lead to severe non-localities in zone interactions. Indeed, one might expect that continuity
and dropping rules could effectively induce additional non-local interactions between differ-
ent zones. However, effect seems to be parametrically small and does not result in drastic
efficiency degradation.
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1 | [0/-45/04/-45/03/45/05/-45/03 /45 /05 /-45/905 /-45 /03 /
-45/03/-45 /04450445 /03 /45 /03 /4504 /45 /0 /45 /904 /-45 /90 /-45 /0 /45

2 | [-45/03/-45/03/-45 /902 /-452 /03 /45 /03 /455 /03 /45 /02 /45 /02 /45 /90 /-45 /90 /-45 /0 /45]
[45/905 /-45 /04 /-45/0,/45/0/45 /904 /-45/90,/-45 /0 /45).

[90/455/02/45/03 /455 /02 /-45 /04 /-45 /05 /-45 /0 /-45 /03 /-45 /05 /-45 /904 /45 /03 /-45 /05 /-45 ]
903/-45/03/-455/90/-45/90 /453 /0 /453 /0 /-453,/90 /455 /90 /-455 /90 /-455 /0 /453 /90 /455]

5 | [45/0/453,/04/-45/03/-45 /05 /-45 /03 /-45 /902 /45 /03 /-45 /05 /-45 /903 /-45 /05 /-455
90/-45/90/455/0/455/0/-455 /90455 /90 /-455 /90 /-453 /0 /455 /90 /455

6 | [45/04/-45/905/45/03/-45 /05 /-45 /903 /-45 /03 /-455 /90 /-45 /90 /453 /0453 /
0/-453,/90/455,/90/-455 /90 /-453 /0 /453 /90 /455]

Table 4: Wing box test case: optimal stacking sequences at second zoning level.

8 Conclusions

In this paper we addressed long standing problem of automated optimization of laminated
composite structures and proposed methodology, which seems to solve major deficiencies of
known approaches. Here we mean primarily the bi-level scheme, which provides clear scales
separation, explicitly utilizes small parameter in the problem and have therefore a great po-
tential efficiency. However, its application scope remains rather limited. Ultimate reason of
this is that distinguishing macro- and micro-scopic variables, which is the cornerstone of bi-
level method, contradicts widely accepted industrial practices, where modeling tools evaluate
performances and constraints directly from the exhaustive set of stacking sequences. In a
nutshell, one is faced therefore with the problem of computationally inexpensive determina-
tion of relevant stacking sequences, identically fulfilling blending and composition rules, for
given set of macroscopic parameters.

We solved this issue and proposed specific “greedy” algorithm of stacking sequences deter-
mination, which is close in spirit, but is vastly different in details, to Shared Layers Blending
approach. In particular, our method performs outer blending construction with built in com-
position rules. Algorithm first determines an exhaustive set of patches, for which continuity
and dropping rules are satisfied identically for any choice of ply orientations, and then solves
integer linear programming problem, which warrants continuity and disorientation require-
ments.

We also provided the construction of tight convex approximation to feasible domain of
macroscopic parameters, which allows to avoid the use of generically less efficient collabo-
rative optimization schemes. Combined with hierarchical zoning it permitted us to develop
optimization methodology, which inherits prime advantages of bi-level scheme, but is free
from its prime deficiencies.

Performance of proposed methodology was tested in two example problems, particular
advantage of which is the possibility to solve them without blending rules imposition. It
provides a lower bound on attainable performance in each case and gives the reference scale
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1 | [45/0/45/0/45/05/45/90/-45/0/-45 /902 /-45 /03 /-45 /05 /-45 /03 /-45 /03 /45 /904 /-45
0/-45/0/45 /054503 /45/0/-45 /04 /45)

2 | [0/45/0/45/04/45 /905 /-45 /04 /-455 /03 /-45 /02 /-45/0/45 /03 /45 /05 /-45 /05 /45
[45/905/-45/0/-45 /04 /45/0/-45 /04 /45,

[0/45/0/45/0/45 /03 /45/90/-45/0/-45 /905 /-45 /05 /-45 /0 /-45 /03 /-45 /03 /45 /90, /-45 ]
02/-45/0/45/04/45/03 /45 /03 /-45 /04 /45]

5| [0/45/0/45/04/45 /904 /-45 /04 /-455/0/-45 /04 /-45/0/45 /03 /45/0/-45 /04 /45]
[45/904/-45/0/-45 /04 /45/0/-45 /04 /45

7 | [90/455/0/45/0/45/04/45/90/-45/0/-45 /904 /-45 /04 /-45 /0 /-45 /05 /-45 /03 /-45 /03 /45 ]
02,/45,/905/-45 /04 /-45 /0 /-45/0/45 /05 /45 /03 /45 /03 /45 /03 /455 /02 /45

8 | [0/45/903/-45 /04 /-45 /05 /-45 /05 /45 /902 /-45 /02 /-45 /0 /45 /05 /45 /03 /45 /0 /-45 /05 /45]
9 | [90/-45/0/45/905 /45 /905 /-455/0/45 /905 /-45/0/45 /0 /-45 /05 /45]

10 | [-45/903/-45/905 /45 /905 /45/905 /-45 /05 /45 /05 /-45 /905 /45 /05 /45 /05 /-45 /03 /45 /0 /
45/03/45/04/-455/03/45/902,/45/90/45 /05 /45 /0/-455/0/-45 /03 /-45 /90 /-45 /90 /
-45/0/45/90/-453/0/455)

11 | [-45/90/-45/904/45/90/455/0/-455 /02 /-45 /905 /452 /0 /453 /0 /-45 /0 /45, /0 /-45 /90
-453/90/-45/0/45/90/455/90,/455/0/-455/0/-45/0/-45/90 /-45 /0 /45 /90 /-453 /0 /453]
12 | [-45/903/455/04/45 /04 /-45/0/45,/0/-45, /0 /455 /0/-45/0/-45 /03 /-45 /902 /-45
904/-45/0/45/90/-453 /0/455)

13 | [0/-455/90/-45/90/-45/903 /45 /90 /45 /905 /-45 /0 /45 /03 /45 /03 /45 /05 /-45 /03 /45 /0 /45
03/45/05/-45/03 /45 /904 /45 /90,45 /03 /45 /03 /-45 /905 /-45 /03 /-45 /90 /455 /90, /
-45/0/45/90/-453/0/455)

14 | [-45/905/-45/905 /-455 /905 /45 /903 /455 /05 /-45 /902 /45 /0 /455 /0/-45 /0 /455 /0 /-455 /90
-45/0/45/90/45,/90,/45,/0/-45,/0/-45 /03 /-45/90 /-45 /90 /-45 /0 /45 /90/-453 /0 /453
15 | [-45/90/-454/902/45/905 /45 /04 /45 /02 /-45/0/452/0/-45/0,/45,/90 /45 /03 /45 /0 /-45
905,/45 /03 /-45 /905 /-45 /05 /-45 /90 /-45 /0 /45 /90 /-453 /0 /453]

16 | [45/05/45,5/90/-45/903/-45/0/45 /904 /-45 /904 /-45/0/-45 /903 /45 /905 /45 /05 /45 /03 /
-45/04/455/04/-45 /05 /45 /904 /45 /90,45 /03 /45/0/-455 /0 /-45 /03 /-45 /904 /-45

903 /-45/905/-45/0/45/90/-453 /0 /453).

17 | [0/-455/90/-45/904/453,/90/-45/0/-45/90/-45 /045 /0 /453 /0 /-45, /0 /45,0 /455 /0/
-455/90/-45/0/45/90/455/90,/455/0/-455/0/-45 /0 /-454 /902 /-45/0/45,/90 /-453,/0 /453]
18 | [-45/903/45/02/45/05/45,/0/455 /05 /-45/04 /-455/0/45 /05 /45 /05 /-45 /05 /-45 ]
904/-45/90/-45/0/45/90/-453,/0/453]

Table 5: Wing box test case: solutions at third zoning level (optimal stacking sequences)
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to compare our results with. Comparison reveals that strict accounting for blending rules
worsens the results only slightly, in both cases obtained optimal solutions are within 10%
gap from the respective theoretical lower bounds.
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A Calculation of Buckling Reserve Factor

Here we briefly summarize how critical buckling factor is calculated for simply supported rect-
angular plates under the bending and compression loads. Derivation closely follows Ref. [24],
therefore we only provide essentially distinct points.

The strain energy of buckled rectangular a; x as plate is given by

1
AU = 3 / d*z D 9w Pw, D = [

a1 Xag

Dll D12+2D66
D12+2D66 D22 :| ) (47)

where w is the orthogonal to plate deflection coordinate, D** is flexural rigidity tensor and
repeated indices taking values 1,2 are summed up. The work performed by external forces

reads

1 o @
AT = =5 [ #a N, N - [Nw N o

a1 Xaz

N*  N™ }

where N are the in-plane forces per unit length. Loads criticality is characterized by the
appearance of non-trivial solution to AU 4+ AT = 0. Using proper eigenmodes representation
for simply supported plates

w = Z Wny s Hsin[ﬁn&xa] (49)

Qg
ni,no «

one obtains the following equation for the amplitudes wy, ,:

32 1
(WQDaﬁnin% + Nani)wnlﬂw = _2]\]12 Z 5 <|: " . :| + |: o :|) wmhmzv

T mi,m2 my Mo ny N2
(50)
where
p g _ pgnm _ 10 pta=2k
[n m] = (2 —n2) (¢ — m2) nXems Xp’q_{ L, p+q=2k+1" 1
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Critical loads N correspond to the first encountered zero eigenvalue of the matrix defining
the linear system . Alternatively, at fixed loads we may consider scaling parameter
A (commonly known as buckling reserve factor), at which the loads AN become critical.
Therefore the problem is to determine minimal positive A when lowest eigenvalue of symmetric
matrix

1 32 1
Qu = 5Dty 0+ Nended = v ([ V] ) 6

becomes zero (here Greek symbols denote multi-indices, p = (n1,m2)). Note that for suffi-
ciently small A the matrix ) is surely positive definite, while the sign of its minimal eigenvalue
Amin for A = 400 depends upon the distribution of external loads.

We calculate buckling reserve factor A via the solution of non-linear equation Ay (A, N) =
0 along the lines presented in Ref. [24]. Namely, the sequence of finite order approximations
to the infinite sum in (50) (and hence the size of matrix (52))) is considered until respective
values of reserve factor A\ stabilize. This provides robust and rather precise estimate of
buckling reserve factor applicable in case of general loads.
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